Cardiac Mechanics, Calcium Overload and Arrhythmogenesis

Name1 Surname1 ICG SB RAS, Novosibirsk, Russia author1@bionet.nsc.ru Name2 Surname2 ICG SB RAS, Novosibirsk, Russia author2@bionet.nsc.ru

Name4 Surname4 ICG SB RAS, Novosibirsk, Russia author4@bionet.nsc.ru Name3 Surname3 ICG SB RAS, Novosibirsk, Russia NSU, Novosibirsk, Russia author5@bionet.nsc.ru

Abstract— It is well-known that Ca2+ overload may cause cardiac arrhythmia. The results obtained in the model suggest that ectopic activity may emerge in a sub-critical myocardial region, e.g. comprising cardiomyocytes with moderately depressed N+-K+ pump.

Keywords— calcium overload, rhythm disturbances, cardiac mechanics

I. MOTIVATION AND AIM

A. Motivation

It is well-known that Ca2+ overload may cause cardiac arrhythmia. However, possible contribution of the mechanical factors to the arrhythmia development in Ca2+overloaded cardiomyocytes has been insufficiently addressed.

B. Aim.

Earlier we have developed a mathematical model of cardiomyocyte electro-mechanical function [1] that predicted a significant role of the intra- and extracellular mechanical factors in arrhythmogenesys. Model prediction was verified in experiments on papillary muscles from the right ventricle of guinea pigs overloaded with calcium [2].

II. METHODS

We utilized the cellular model to study effects of the electromechanical coupling between cardiomyocytes in a 1D heterogeneous muscle strand formed of 90% of normal (N) cardiomyocytes and 10% of sub-critical (SC) cardiomyocytes with decreased Na+-K+ pump activity. Single SC cardiomyocytes did not demonstrate spontaneous activity during isometric contractions at a reference length.

Regular fiber twitches at the reference initial cell length were induced by 1 bps electrical stimulation applied at an edge of the strand. Excitation spread along the tissue via electrodiffusional cell coupling followed by cell contractions and force development in the fiber.

III. RESULTS

Mechanical interactions between N- and SC-cells in the tissue resulted in the spontaneous activity emerged in the SC-zone between the regular stimuli. If the excitation wave spread from SC- to N-region, the SC-cells developed delayed after-depolarizations (DAD) that caused a slowly developing beat-to-beat decrease in the force of fiber contraction. If the excitation spread in opposite direction, DAD in the SC-cells induced reflected downward excitation waves capturing the normal region and followed by extrasystoles in the whole fiber

ACKNOWLEDGMENT (Heading 4)

Supported by the RFBR (14-01-00885, 14-01-31134), by Presidium of UB RAS (12-M-14-2009, 12-Π-4-1067) and by UrFU (Act 211 of RF Government #02.A03.21.0006).

REFERENCES

- Katsnelson L.B. et al. (2011) Contribution of mechanical factors to arrhythmogenesis in calcium overloaded cardiomyocytes: Model predictions and experiments. Progress in Biophysics and Molecular Biology. 107(1): 81-89)
- [2] Lashin S.A., Matushkin Yu.G. (2012) Haploid evolutionary constructor: new features and further challenges. In Silico. Biol. 11(3): 125-135.