

Developing an accurate force field for simulating modified RNA

Ansuman Lahiri Department of Biophysics, Molecular Biology and Bioinformatics University of Calcutta Kolkata, India

Motivation and Aim

- Post-transcriptional modifications occur extensively in RNA and provide an additional layer of chemical coding that presumably alters the chemistry, structure and dynamics of the molecules
- Currently the RNA modification database Modomics (http://genesilico.pl/ modomics/) has more than 140 modified nucleosides listed
- What are the structural and dynamical consequences of these modifications?
- Molecular dynamics simulation can be a useful technique to answer this question provided we have a well-validated force field for all the modifications

Methods and Algorithms

We have shown that many of the AMBER force fields for RNA do not work in the case of modified residues (Deb et al. JCIM 2014).

FF99 FF99x YIL 250 a 250 200 200 g 150 e 150 -100 - 5050 100 150 200 250 300 -100 -50 50 100 150 200 250 300 0 **Pseudorotation Angle (Degrees) Pseudorotation Angle (Degrees) FF10** FF99TOR 3501 250 a 250 200 200 g 150 e 150 ×100 100 -100 -50 0 50 100 150 200 250 -100 -50 0 50 100 150 200 250 300 Pseudorotation Angle (Degrees) Pseudorotation Angle (Degrees)

Our protocol (IDRP) for force field revision (Deb et al. JCC 2016)

E.g., the conformational distribution for 2-thiouridine does not match with NMR observation (red rectangle)

Results

Our force field parameters are also transferable, e.g. 2-thiouridine parameters can be transferred to its C5-derivatives *Sarkar et al. JPCL 2020* Our protocol (IDRP) provides better agreement with NMR data compared with the current AMBER force field (*Aduri et al. J. Chem. Theory Comput. 2007*)

% of C3' endo (NORTH) sugar pucker

Residues	Single letter code	FF99bsc0- <u>y</u> IDRP	FF99bsc0-Aduri	FF99-Aduri
5-methylaminomethyl-2- thiouridine	ESU	57	41	31
5-Methyl-2-thiouridine	52U	60	46	33
5-aminomethyl-2-thiouridine	SAU	57	43	34
5-taurinomethyl-2-thiouridine	STU	42	29	29
5-methoxycarbonylmethyl-2- thiouridine	SMU	60	43	33

Publications

- Deb, I., Sarzynska, J., Nilsson, L., & Lahiri, A. (2014). Conformational preferences of modified uridines: comparison of AMBER derived force fields. Journal of Chemical Information and Modeling, 54(4), 1129-1142.
- Deb, I., Sarzynska, J., Nilsson, L., & Lahiri, A. (2014). Rapid communication capturing the destabilizing effect of dihydrouridine through molecular simulations. Biopolymers, 101(10), 985-991.
- Deb, I., Pal, R., Sarzynska, J., & Lahiri, A. (2016). Reparameterizations of the χ Torsion and Lennard-Jones σ Parameters Improve the Conformational Characteristics of Modified Uridines. Journal of Computational Chemistry, 37(17), 1576-1588.
- Sarkar, A. K., Sarzynska, J., & Lahiri, A. (2020). Ensemble Allosteric Model for the Modified Wobble Hypothesis. The Journal of Physical Chemistry Letters, 11(15), 6337-6343.
- Dutta, N., Sarzynska, J., & Lahiri, A. (2020). Molecular dynamics simulation of the conformational preferences of pseudouridine derivatives: improving the distribution in the glycosidic torsion space. Journal of Chemical Information and Modeling, 60(10), 4995-5002.
 - Dutta, N., Deb, I., Sarzynska, J., & Lahiri, A. (2022). Data-informed reparameterization of modified RNA and the effect of explicit water models: application to pseudouridine and derivatives. Journal of computer-aided molecular design, 36(3), 205-224.

Acknowledgments

• People

- Indrajit Deb
- Rupak Pal
- Aditya K. Sarkar
- Nivedita Dutta
- Collaborations
 - Dr. Joanna Sarzynska, IBCH, Poland
 - Prof. Lennart Nilsson, KI, Sweden

- Funding
 - UGC
 - CSIR
 - DST
 - SERB (EMR/2016/007753)
- Facility
 - Poznan Supercomputing and Networking Centre
 - BRAF, C-DAC, Pune
 - HPC Facility for Modern Biology, University of Calcutta