The effect of diol on behavior in a MPTP-induced model of Parkinson’s disease in mice

Emma-Yanina V. Gild
Scientific Research Institute of Neurosciences and Medicine;
Novosibirsk State University,
Novosibirsk, Russia
emmagild@gmail.com

Mikhail V. Tenditnik
Scientific Research Institute of Neurosciences and Medicine,
Novosibirsk, Russia

Nina I. Dubrovina
Scientific Research Institute of Neurosciences and Medicine,
Novosibirsk, Russia

Tamara G. Amstislavskaya
Scientific Research Institute of Neurosciences and Medicine,
Novosibirsk, Russia

Konstantin P. Volcho
Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS,
Novosibirsk, Russia

Maria A. Tikhonova
Scientific Research Institute of Neurosciences and Medicine,
Novosibirsk, Russia

Nariman F. Salakhudtinov
Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS,
Novosibirsk, Russia
Aim: evaluating cognitive function using behavioral tests in mice with MPTP-induced PD-like disturbances treated with Diol.

Modeling of PD was performed by intraperitoneal injecting 30 mg/kg MPTP.
Materials & methods

Day 0

- Intraperitoneal MPTP injection 30mg/kg
- Intraperitoneal saline injection

Day 1

- Diol oral treatment 20mg/kg
- L-DOPA oral treatment 100mg/kg

Days 5-6

- Rotarod test
- Open field test

Day 7

- Passive avoidance test (learning phase)

Days 12-14

- Passive avoidance test (memory extinction)

Days 15-25

No motor deficits were revealed
Compared to mice treated with MPTP, those treated with MPTP and Diol showed a recovery in learning.
Results

Learning and extinction of passive avoidance response dynamics

Control

MPTP

MPTP+Diol

MPTP+L-DOPA

* - p<0.05; ** - p<0.01 comparing to the level prior learning;
- p<0.05; ## - p<0.01 comparing to the 1st day of testing (test 1).

Compared to mice treated with MPTP, those treated with MPTP and Diol showed an enhanced memory reconsolidation. L-DOPA had similar to Diol positive effect on learning while the dynamics of memory extinction was similar to that in control group.
Comparing to mice treated with MPTP, mice treated with MPTP and Diol showed:

- a recovery in learning;
- enhanced memory reconsolidation;
- no signs of motor disturbances;
- similar to the L-DOPA positive effect on learning.

Thus, the Diol indeed has beneficial effect on behavioral changes (namely cognitive deficits) in MPTP-induced model of Parkinson’s disease in mice.

Acknowledgement. The study was supported by budgetary funding for basic scientific research of the Scientific Research Institute of Neurosciences and Medicine (theme No. 122042700001-9 (2021-2025)). The studies were partially implemented using the Unique scientific installation “Biological collection - Genetic biomodels of neuro-psychiatric disorders” (No 493387) at the Scientific Research Institute of Neurosciences and Medicine.