"Bioinformatics of Genome Regulation and Structure/Systems Biology" – BGRS/SB-2022

On the question of activity of oxidative branch of Pentose Phosphate shunt in *pgl* mutant of *E. coli*

Kovaleva E. S.¹, Shepelin D. D.², Baboshin M. A.¹, Golubeva L. I.¹, Mashko S. V.¹

¹ Ajinomoto-Genetika Research Institute, 117545, Moscow, Russian Federation.

² Recent affiliation: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark.

July 4–8, 2022 Novosibirsk

The principle scheme of ¹³C-MFA (¹³C metabolic flux analysis)

¹³C metabolic flux analysis (¹³C-MFA) is complex method for metabolism investigations allowing quantitative estimation of actual carbon metabolic fluxes distribution *in vivo*.

Flux calculation and estimation [OpenFLUX2]

The role of PGL reaction in *E. coli* central metabolism

*Juan C. Aon et al., 2008, Appl Environ Microbiol *Jonathan M. Monk et al., 2016, Cell Syst

** C. P. Long and M. R. Antoniewicz, 2019, Metab Eng

** Christopher P Long et al., 2017, Metab Eng ** this work

¹³C-MFA of *E. coli* oxPPP mutants

The flux solution with the best accordance with experimental data for Δpgl mutant corresponds to carbon flux through the oxPPP of **18%** of input glucose in contrast with **25%** in parent strain. In flux calculations minimal value of SSR is commonly used as conditional criterion. Formally, any flux distribution providing SSR value which passes χ^2 -criterion can be recognized as acceptable. However, flux calculation under assumption that *pgl* inactivation blocks oxPPP led to only statistically unacceptable solution. We determined that flux through PGL reaction responded to χ^2 -criterion on minimal 10% level. It means that the the flux through the oxPPP decreases by no more than 2.5-times in the Δpgl mutant.

Role of oxPPP in NADPH supplementation

According to Sauer et al.^{*}, the main sources of NADPH in *E. coli* are oxidative pentose phosphate pathway (oxPPP), transhydrogenase PntAB and isocitrate dehydrogenase (IDH).

Strain	Growth rate, h ⁻¹
MG1655	0.63
MG1655 Δzwf	0.55
MG1655 Δzwf ΔpntAB	0.09 🖌
MG1655 ∆pgl	0.48
MG1655 Δpgl ΔpntAB	0.38
MG1655 ∆gnd	0.56
MG1655 Δgnd ΔpntAB	0.33

^{*}U. Sauer et al., 2004, *J Biol Chem*

Dramatically decreased growth

∆pql∆pntAB and The ∆gnd∆pntAB mutants demonstrated decrease of growth rate in 1.3 and 1.7 times, respectively. This additionally confirms that pgl inactivation do not abolish activity of oxPPP as in case of *zwf* inactivation. The interesting fact that mutant $\Delta gnd\Delta pntAB$ grows 1.3 times slower than $\Delta pg \Delta pntAB$ mutant despite of activity of Entner-Doudoroff bypass, indicating, probably, that the first strain has more restriction in NADPH supplementation.

We analyzed the growth of mutant with inactivation of gluconate utilization genes, *gntT*, *gntKU* and *gntP*, on minimal medium with glucose. Simultaneous inactivation of these genes reduces growth of Δpgl and $\Delta pgl\Delta pntAB$ mutants on glucose. These observations allow us to suppose that in MG1655 Δpgl strain the PGL reaction can be at least partly bypassed by the dephosphorylation of the substrate of PGL reaction, 6-phosphogluconolactone, and its conversion to gluconate, which then is consumed by the cells.