Methylation of p53-responsive microRNA genes in tumor tissue of lymphoma

E. Voropaeva¹, T. Pospelova², O. Berezina², M. Churkina², A. Gurazheva¹, V. Maksimov¹ ¹Institute of Therapy and Preventive Medicine - branch of ICG SB RAS, Novosibirsk, Russian Federation ²Novosibirsk State Medical University, Novosibirsk, Russian Federation

The antitumor effects of the p53 protein are largely mediated by microRNAs, the expression of which it induces directly, or regulates at the post-transcription level by influencing the processing of these molecules. We were interested in a group of oncosuppressive p53-regulated microRNAs, the expression of which is reduced in lymphomas (Tabl. 1).

Most of the microRNA coding genes are located in CpG-rich regions. For this reason, methylation is considered to be one of the significant mechanisms of regulation of microRNA expression.

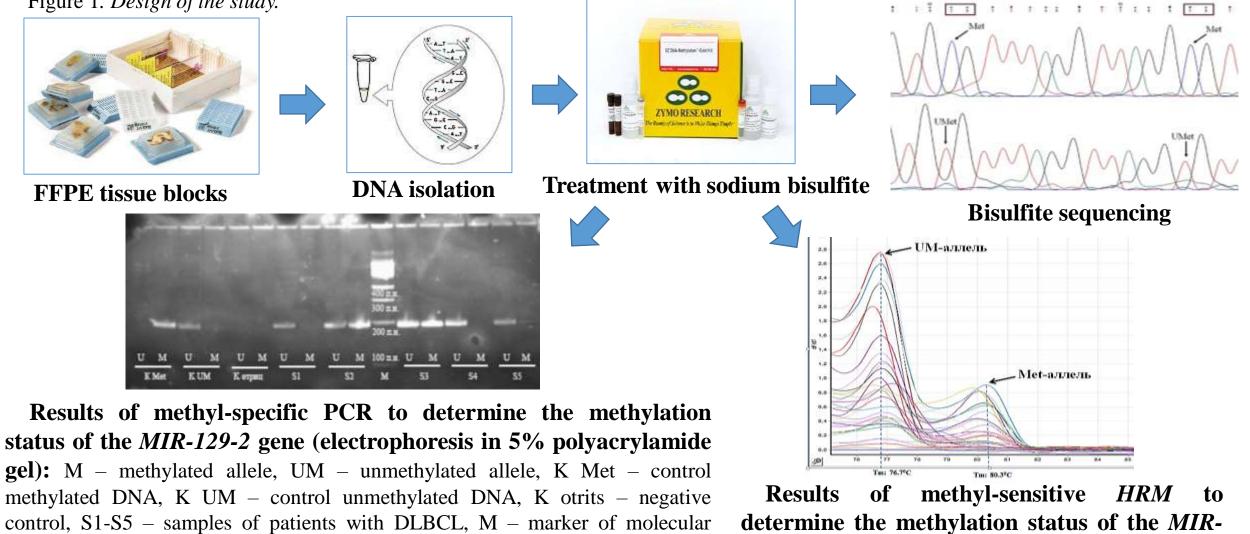
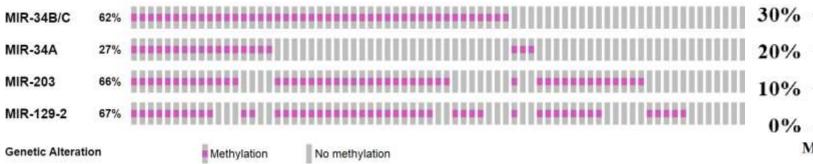

MicroRNA	Gene	Localization	Location		
miR-203	MIR-203	14q32.33	Intergenic		
miR-129	MIR-129-2	11p11.2	Intragenic, host gene EST		
miR-34a	MIR-34A	1p36.22	Intragenic, host gene <i>EF570048</i>		
miR-34b	MID 24D/C	11~22.1	Intragenic, host gene BC021736		
miR-34c	MIR-34B/C	11q23.1			

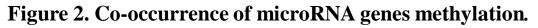
 Table 1. Brief description of microRNA genes

Research objective was to identify the frequency and specificity of p53-responsive oncosuppressive MIR-34B/C, MIR-34A, MIR-203 and MIR-129-2 genes methylation in Diffuse Large B-cell Lymphoma (DLBCL).

<u>Materials and methods.</u> The design of the study is presented below.

Figure 1. Design of the study.


34B/C gene.


control, S1-S5 – samples of patients with DLBCL, M – marker of molecular weight of 100 bp.

Diagnostic FFPE tissue blocks of 73 patients with DLBCL were taken. Sections of blocks contained at least 50% of tumor cells. Lymph node biopsies with reactive polyclonal B-cell proliferation (n=11) was used to control the tumor-specificity of the detected methylation. DNA was isolated from tissue blocks by phenol-chloroform extraction using guanidine and treated with sodium bisulfite using an EZ DNA methylation-lightning kit with manufacturer's protocols.

Determination of the methylation status of the gene in tumor tissue was carried out by methods of methyl-specific PCR (*MIR-129-2* and *MIR-203*) and methyl-sensitive analysis of high-resolution melting curves (*MIR-34A* and *MIR-34B/C*). We evaluated the combined methylation of genes in pairs using the one-sided Fisher exact criterion (p-value) and multiple testing correction with Benjamin-Hochberg procedure (q-value).

<u>Results.</u> The methylation of *MIR-129-2, MIR-203, MIR-34A* and *MIR34B/C* in lymphoma occurred with frequency of 67%, 66%, 27% and 62%, respectively (Fig. 1). It was not detected in the tissue of reactive lymph nodes.

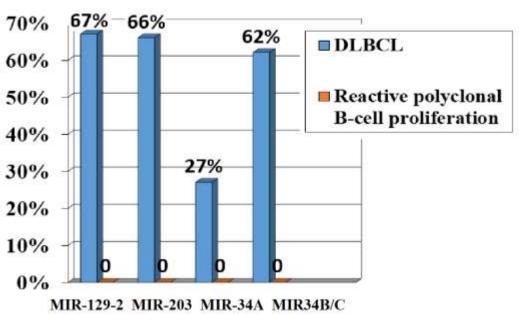


Figure 1. Frequency of the microRNA genes methylation.

Combined methylation of *MIR-203*, *MIR-129-2* and *MIR-34B/C* genes (p<0.013, q<0.020), as well as pair of *MIR-34B/C* and *MIR-34A* genes (p=0.010, q=0.029) was detected (Fig. 2, Table 2).

Table ? The analysis tested nains between the MID 211

N

N

Table 2. Th	e analysis test	ted pairs	between t	ne <i>MIK-34A</i> ,					
MIR-34B/C, MIR-203 and MIR-129-2 genes methylation			Parameter	Met (n=20)	UMet (n=53)	p-value			
Gene A	Gene B	p-value	q-value	Tendency	IPI risk group				
MIR-34B/C	MIR-34A	<0.001	<0.001	Co-occurrence	Low and intermediate/low	2/20 (10%)	27/53 (50.9%)		
1/11K-5+D/C	1 ///// -3-#/1				High and intermediate/high	18/20 (90%)	26/53 (49.1%)	0.002	
MIR-34B/C	MIR-203	0.013	0.020	Co-occurrence	LDH le	vel in blood ser			
MIR-34B/C	MIR-129-2	0.014	0.029	Co-occurrence	> 450 U/l	15/20 (75%)	27/53 (50.9%)	0.064	
MIR-129-2	MIR-203	0.003	0.018	.018 Co-occurrence Effectiveness of treatment					
					Remission frequency	11/20 (55%)	41/53 (77.4%)	0.060	
					5-year OS, months	40.0	56.6	0.162	

Table 3. Association of MIR-34A methylation with clinical and
laboratory parameters

An assessment of the relationship between studied microRNA genes methylation and clinical-laboratory features of the DLBCL (Table 3) showed that 18/20 (90%) patients in the subgroup with the *MIR-34A* methylation had a high and intermediate/high risk according to International Prognostic Index against 26/53 (49.1%, p=0.002) in the subgroup of patients without gene methylation. In the subgroup with a methylated status of this gene there was a tendency (p=0.064) towards a higher frequency of detection of increased level of LDH which a marker of high paraclinical activity of the tumor.

Methylation of *MIR-34A* was associated with reduced frequency of remission (p=0.060) and the tendency to decrease of 5-year overall survival (OS) (p=0.162) (Table 3, Fig. 3).

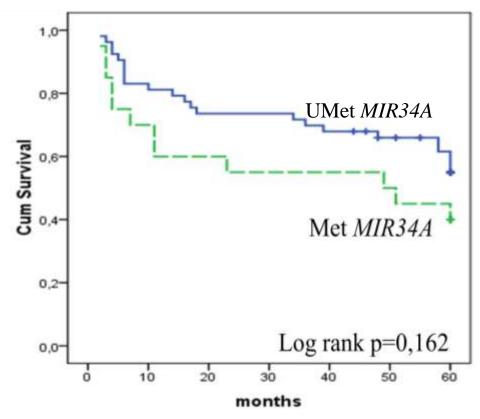


Figure 3. OS of DLBCL patients with methylated and unmethylated *MIR-34A* gene status.

The threshold value of the determined immunohistochemically high expression of Ki-67 was assumed at the level of 45%. In our study group, the association of *MIR-34B/C* and *MIR-203* methylation with high Ki-67 level in tumor tissue was revealed: p=0.026, OR=3,819 (95% CI: 1,139; 12,804) and p=0.011, OR=4,457 (95% CI: 1,372; 14,481), respectively (Table 4).

At the same time no correlation between methylation of *MIR-34B/C*, *MIR-129-2* and *MIR-203* and clinical parameters or effectiveness of therapy in the analyzed group was found.

Table 4. Association of MIR-34B/C and MIR-203 methylationwith Ki-67 expression level

Gene	Ki67 exp	pression >	45% cells	p-value	OR	95% CI	
MIR-34B/C	Met	25/37	67.57 %	0.026	3.819	(1.139;12.804)	
	UMet	6/17	35.29 %			(1.13),12.004)	
MIR-203	Met	24/34	70.59 %	0.011	4.457	(1.372;14.481)	
	UMet	7/20	35 %				

<u>Conclusions.</u> Tumor-specific methylation of gene promoters can serve as a significant mechanism for reducing the miR-34B/C, miR-34A, miR-203 and miR-129 expression in DLBCL.

In the lymphoma tissue the *MIR-34A*, *MIR-34B/C*, *MIR-129-2* and *MIR-203* methylation is of a combined nature, which may make biological sense. The fact is that these microRNAs have common target oncogenes (Fig. 4).

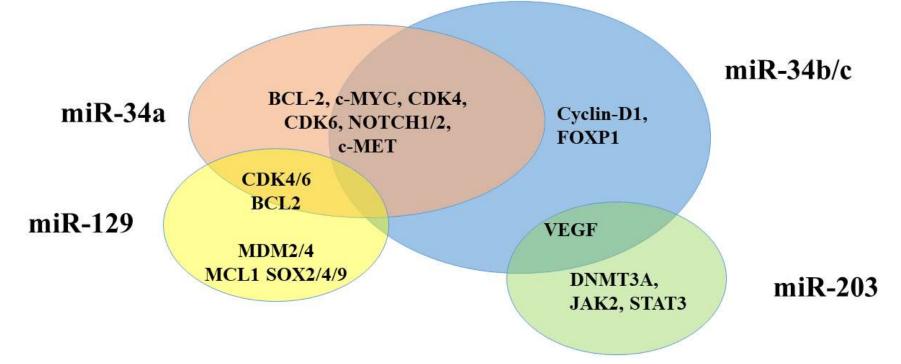


Figure 4. The common targets of miR-34a, miR-34b/c, miR-129 and miR-203.

Aberrant methylation of oncosuppressive microRNA genes associated with underlying p53 signalling pathways is a potentially useful molecular biomarker in the lymphoma diagnosis.

MIR-34A gene methylation is potentially helpful in prognosis and targeted therapy strategy development of DLBCL. *Funding:* This work was supported by grant of Russian Science Foundation $N_{22-25-00222}$.