# Light perception in Beroidae ctenophores: evidence from laboratory experiments and genomics data

Baiandina Iu., Kuleshova O., Krivenko O.

A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Sevastopol

Ctenophores are the basal Metazoa branch in which evolution the animals common ancestral vision mechanisms could be realized for the first time. There are a little bit evidence about any aspects of photosensitivity in ctenophores. Photoreceptor structures were found in the aboral organ of various ctenophores species.

Three opsins have been discovered in the genome of lobate ctenophore *Mnemiopsis leidyi* 

Placozoa

Protosto

Ciliary Opsins Group 4 Opsins Rabdomeric Opsins

Placopsin

Deuterostomes



## Aim:

 To provide the first experimental results on the reaction of *Beroe ovata* to high-intensity light exposure

## Methods and Algorithms:



• To identify genes relevant for light sensing in Beroidae

| Transcriptome                    |                 |                    |     |
|----------------------------------|-----------------|--------------------|-----|
| Name                             | BioSample       | SRA                |     |
| Beroe forskalii                  | SAMN07658075    | SRR6074515         |     |
| Beroe ovata                      | SAMN07658076    | SRR6074516         |     |
| Beroe sp. UF-2017<br>(Australia) | SAMN07426145    | SRR5892577         |     |
| Beroe sp. UF-2017<br>(Antartica) | SAMN07426140    | SRR5892576         |     |
| Name                             | Total Sequences | Sequence<br>length | %GC |
| <i>Beroe ovata</i> (Black Sea)   | 11712387        | 35-151             | 45  |

The search for protein sequences that may relate to photoreception

at NCBI

#### Genome

| Beroe forskalii | GCA_011033025.1 |
|-----------------|-----------------|
| Beroe ovata     | GCA_900239995.1 |



## **R**esults:

- After 1–5 sec of starting illumination of the *B. ovata* aboral organ with a violet spectrum laser the ctenophores press the body and entrails near the statocyst and begin to move from the laser beam (at a speed of about 3 mm/s)
- No pronounced reactions of *B. ovata* to high-intensity light exposure on their ctenes and lobes were found

Violet laser 405 nm

 The reactions of ctenophores to red and green laser were less pronounced than the response to less strong violet light exposure

After illumination

 $\vec{V}$ = 3 mm/s

Starting illumination

#### Beroidae vs *Mnemiopsis leidyi* opsins (BLASTP)

|                                  | Name   | Prot. Len<br>(aa) | Total<br>Score | Query<br>cover | Per.<br>Ident | Acc. Len |
|----------------------------------|--------|-------------------|----------------|----------------|---------------|----------|
| Beroe<br>forskalii               | Opsin1 | 121               | 137            | 90%            | 73.39%        | 345      |
|                                  | Opsin3 | 107               | 58.5           | 42%            | 54.35%        | 404      |
| Beroe<br>forskalii<br>(Genome)   | Opsin1 | 179               | 249            | 92%            | 77.11%        | 345      |
|                                  | Opsin3 | 391               | 294            | 88%            | 52.86%        | 404      |
| <i>Beroe ovata</i><br>(BlackSea) | Opsin1 | 363               | 499            | 86%            | 78.59%        | 345      |
|                                  | Opsin2 | 270               | 255            | 98%            | 57.30%        | 399      |
|                                  | Opsin3 | 422               | 239            | 86%            | 49.60%        | 404      |
| <i>Beroe ovata</i><br>(Genome)   | Opsin1 | 351               | 498            | 89%            | 78.59%        | 345      |
|                                  | Opsin2 | 401               | 429            | 97%            | 60.15%        | 399      |
|                                  | Opsin3 | 123               | 51.2           | 37%            | 43.48%        | 404      |
| Beroe ovata                      | Opsin3 | 126               | 108            | 99%            | 52.80%        | 404      |
| Beroe sp.<br>Antartica           | Opsin1 | 302               | 465            | 100%           | 76.16%        | 345      |
|                                  | Opsin3 | 394               | 320            | 96%            | 57.44%        | 404      |
| Beroe sp.<br>Australia           | Opsin2 | 141               | 61.6           | 43%            | 70.97%        | 416      |
|                                  | Opsin3 | 363               | 318            | 83%            | 54.07%        | 404      |

Ctenophore opsins phylogenetic tree



✓ Beroidae have three opsin genes like the Lobate ctenophore *M. leidyi* 

- ✓ Each ctenopsin forms are separate cluster on the phylogenetic tree
- ✓ Ctenopsins are one of the first branches of the Metazoan opsin evolution tree
- Ctenopsins 1 and 2 may be in charge of the first step of light perception in ctenophores

## **Conclusions**:

- Ctenophores have the ability to directed photoreception.
- The response of *Beroe ovata* to high-intensity violet spectrum light radiation is observed with a point impact on the aboral organ.
- Other parts of the ctenophore's body are not sensitive to the action of high-intensity light.
- Genes sequences which can response for the photoreception in Beroidae have been obtained. Beroidae has three opsin genes like the Lobate ctenophore *M. leidyi*.
- Ctenopsins are one of the first branches of the Metazoan opsin evolution tree.

Acknowledgements: The study was supported by IBSS GA No. 121030100028-0.

