OrthoWeb – web application for macro- and microevolutionary analysis of genes

Zakhar Mustafin^{1,2}, Alexey Mukhin^{1,2}, Dmitry Afonnikov^{1,2,3}, Yury Matushkin², Sergey Lashin^{1,2,3}

Study was supported by the RFBR 20-04-00885 grant

- 1 Kurchatov Genomics Center
- 2 Institute of Cytology and Genetics
- 3 Novosibirsk State University

Novosibirsk, Russia

Novosibirsk, 2020

Tomislav Domazet-Loso and co-authors proposed phylostratigraphic analysis in the beginning of 2000 years¹. Phylostratigraphic analysis allows to trace evolutionary innovations in genome. The analysis is usually based on two steps:

1) Macroevolutionary analysis. It allows to find "the age of gene" and related characteristics.

2) Microevolutionary analysis.It allows to detect the type of selection affecting to gene.

Phylostratigraphic analysis

1 - Domazet-Lošo T., Brajković J., Tautz D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages // Trends Genet. 2007. T. 23. № 11. C. 533–539.

Divergence Index (DI)

 $DI = \left(\sum_{ort} \frac{dN}{dS}\right)/N$ (1) $C = \left(\sum_{ort} \frac{dN}{dS}\right)/N$ (2) N = 1 C = 0 C =

1) AUG AAC GGG GUU AAC AAC UGAent specie,
bus found)2) AUG AAC GGA GUG AAU AAA UGA||||aminoacid:start/MNA->AV->VN->K stop

Detecting of the type of selection is based on dN/dS ratio calculation. The main idea is to compare the number of synonymous (dS) and nonsynonymous (dN) substitutions in sequences of gene of analyzed organism and most evolutionary close orthologous genes. The ratio value above 1 indicates the evolution of the gene under positive Darvinian selection. The ratio value close to 1 indicates that a gene evolves under neutral regime. The values close to 0 indicate strong purifying selection acting on a gene.

DI is based on average dN/dS value in comparison of the closest relatives organisms.

OrthoWeb

Analys	is	Results							
Main parameters									
Use KEGG for a	🔽	Use BLAST for							
Identity:	1	Genes:							
SW score:	0								
Use online data	:: 🔲	Upload labels:							
Domains number: 0									
Use specific domain									
Divergence index analysis parameters									
Launch DI analy	ysis:								
Taxonomy dista	ance:	2							
Use specific sp	ecies:								
Launch from list	n	Launch from files							

Session ID:	default									
Make a report										
Upload files										
hsa.txt	250.08 Kb 🔺 🗙									

OrthoWeb is a web application, developed by using Java language with Spring and Webix Frameworks.

It allows to count the Phylostratigraphic Age Index and Divergence Index of gene. There are two ways to find the orthologous genes implemented in OrthoWeb: by using KEGG database and by using BLAST software.

It uses MongoDB to store the local data to increase the speed of future analysis.

Available

at

https://orthoweb.sysbio.cytogen.ru/

Gene ontology analysis

biological process				cellular component				molecular function			
network	PAI	DI	Genes	network	PAI	DI	Genes	network	PAI	DI	Genes
cell killing	7.58273	0.5411	139	nuclear membrane part	6.9375	0.39113	16	receptor regulator activity	7.06432	0.37336	482
activation of NF-kappaB-inducing kinase activity	7.11111	0.28567	18	sperm part	6.5419	0.41274	179	hijacked molecular function	7.04	0.35119	75
regulation of response to biotic stimulus	6.98291	0.39683	117	extracellular matrix com	6.425	0.23489	120	receptor inhibitor activity	6.8	0.39541	15
regulation of tumor necrosis factor superfamily	6.97345	0.31855	113	membrane part	6.30406	0.32414	<mark>6798</mark>	molecular transducer activity	6.63508	0.406	2258
regulation of type 2 immune response	6.92593	0.41388	27	plasma membrane part	6.23145	0.27529	2614	signal transducer activity	6.48504	0.38546	2373
regulation of tumor necrosis factor production	6.89091	0.31687	110	extracellular region	6.13161	0.28488	4764	enzyme inhibitor activity	6.46465	0.31257	396
regulation of tyrosine phosphorylation of STAT	6.89041	0.2924	73	membrane	6.04011	0.29767	9200	protein tyrosine kinase activator	6.2	0.20295	20
regulation of receptor activity	6.66003	0.33207	603	cell	5.93211	0.29703	16335	molecular function regulator	6.17127	0.27286	1810
regulation of response to external stimulus	6.51185	0.29428	717	cell part	5.92868	0.29674	16306	antioxidant activity	6.07778	0.22972	90
regulation of viral genome replication	6.50588	0.40309	85	extracellular region part	5.91318	0.26021	4043	enzyme regulator activity	5.95486	0.25064	1019
gliogenesis	4.87795	0.14915	254	nuclear part	5.08379	0.23341	4583	transcription regulator activity	5.22771	0.25539	1884
regulation of translational initiation	4.875	0.17297	80	synapse	5.06014	0.15447	848	phosphatase regulator activity	5.125	0.18273	88
regulation of transcription from RNA polymeras	4.80101	0.20158	1975	macromolecular complex	5.05067	0.2103	4894	potassium channel regulator activ	5.10417	0.21574	48
regulation of transforming growth factor beta re	4.71287	0.14225	101	synapse part	5.0323	0.1564	712	protein phosphatase regulator ac	5.09091	0.19057	77
regulation of signal transduction by p53 class m	4.66286	0.19406	175	nucleoplasm part	5.02343	0.21362	1067	ion channel regulator activity	5	0.1677	94
regulation of striated muscle tissue developmer	4.61972	0.09185	142	axon part	5.02174	0.12847	184	transcription factor activity, trans	4.84422	0.19709	597
cell aggregation	4.54545	0.19532	22	cell division site part	4.96667	0.18475	60	translation regulator activity	4.74468	0.17354	47
regulation of ubiquitin-protein transferase activ	3.92	0.16637	125	chromosomal part	4.63206	0.24068	1541	calcium channel regulator activity	4.64865	0.06765	37
regulation of ubiquitin protein ligase activity	3.52128	0.13834	94	nuclear chromosome pai	4.45373	0.22498	1232	channel inhibitor activity	4.61111	0.13628	36
regulation of stem cell differentiation	2.89781	0.08684	137	cytosolic part	3.91983	0.19114	237	ion channel inhibitor activity	4.57143	0.14018	35

«Young» - immune system, virus response, membrane/receptors

«Old» – stem cells, ubiquitin related, intracellular structures, transcription, translation

OrthoWeb has been used to count PAI and DI of genes associated with different gene ontology terms of *Homo sapiens*. **The main conclusion** is that the intracellular processes mostly associated with old genes and extracellular process mostly associated with young genes.

Stress associated genes analysis

0.25 -

Genes of Arabidopsis thaliana, associated with different types of stress, has been analyzed and compared with the analysis of all protein coding (CDS) genes of A. thaliana. The gray columns represents the fraction of PAI and DI in CDS genes. The color lines represent the difference between the frequency of the value of PAI/DI in stress-associated genes and CDS genes.

Z. S. Mustafin, V. I. Zamyatin, D. K. Konstantinov, A. V. Doroshkov, S. A. Lashin, D. A. Afonnikov, Phylostratigraphic Analysis Shows the Earliest Origination of the Abiotic Stress Associated Genes in A. thaliana // Genes, 2019, 10(12), 963