Phylostratigraphic approach in evolutionary analysis: comparison of methods

Tatiana Martusheva³, Zakhar Mustafin^{1,2}, Sergey Lashin^{1,2,3}

Study was supported by the RFBR 20-04-00885 grant

1 – Kurchatov Genomics Center
2 – Institute of Cytology and Genetics
3 – Novosibirsk State University
Novosibirsk, Russia

Novosibirsk, 2020

Phylostratigraphic tree:

1/2 1/2	Clade-specific genes			Age
and a second		Number)	(%)	(Ma)
	Arabidopsis thaliana	1084	(4.0%)	0
Cenzoic	Arabidopsis	216	(0.8%)	13
* 0 /~>//	Camelineae	172	(0.6%)	23
	Brassicaceae	900	(3.3%)	31
	Brassicales	32	(0.1%)	71
-	Malvids	146	(0.5%)	96
Mesozoic	Rosids	218	(0.8%)	104
	Core eudicotyledons	510	(1.9%)	125
	Magnoliophyta (flowering)	971	(3.6%)	170
P	Spermatophyta (seed bearing)	946	(3.5%)	329
Phanerozoic	Tracheophyta (vascular)	475	(1.7%)	496
zoic	Embryophyta (land)	3840	(14.1%)	547
	Viridiplantae (green plants)	1031	(3.8%)	968
recan	Eukaryota	8229	(30.3%)	1628
Precambrian	Cellular organisms	8433	(31.0%)	2520
Strain Contraction	Total: 2	7203		

Z. W. Arendsee, L. Li, and E. S. Wurtele, "Coming of age: orphan genes in plants," Trends Plant Sci., vol. 19, no. 11, pp. 698–708, Nov. 2014, doi: 10.1016/J.TPLANTS.2014.07.003. **Phylostratigraphic analysis** helps to define the time of the gene emergence. It is done through evaluation of the orthologic gene distribution in the genomes of the organisms, related to various taxonomic groups.

Phylostratigraphic tree is grown/constructed on the basis of gene homology and gene age.

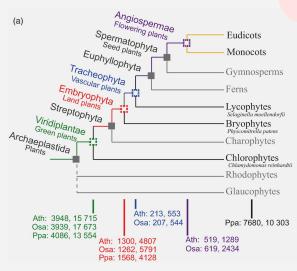
Phylostratum shows the level of the distant phylogenetic node in the whole taxonomic tree, including at least one species from the list of species, which has orthologs of the analyzed gene.

To determine the selection pressure on a gene in phylostratigraphy Ka/Ks is also calculated

Ka - the number of non-synonymous substitutions per non-synonymous site.

Ks - the number of synonymous substitutions per synonymous site for each orthologous gene pair.

In this study the results of various gene age calculating methods are compared:


Cellular Organisms	1
Eukaryota	2
Viridiplantae	3
Embryophyta	4
Tracheophyta	5
Magnoliophyta	6
eudicotyledons	7
core eudicotyledons	8
rosids	9
Brassicales	10
Arabidopsis	11
A.thaliana	12

M. Quint, H.-G. Drost, A. Gabel, K. K. Ullrich, M. Bönn, and I. Grosse, "A transcriptomic hourglass in plant embryogenesis," Nature, vol. 490, no. 7418, pp. 98–101, Sep. 2012, doi: 10.1038/nature11394.

Package myTAI

TAI calculation transcriptome age index:

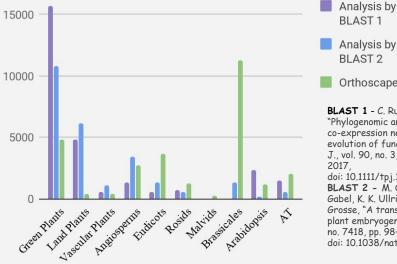
 Orthologous gene search by BLAST

C. Ruprecht et al., "Phylogenomic analysis of gene co-expression networks reveals the evolution of functional modules," Plant J., vol. 90, no. 3, pp. 447–465, May 2017, doi: 10.1111/tpj.13502.

Or	rthoscape	
(a cytoso	cape applic	ation)
PAI	calculation	-
phylostra	tigraphic	age
index:		

 Orthologous gene search on the base of KEGG

Cellular Organisms	0
Eukaryota	1
Viridiplantae	2
Streptophyta	3
Embryophyta	4
Tracheophyta	5
Spermatophyta	6
Magnoliophyta	7
eudicotyledons	8
Gunneridae	9
Pentapetalae	10
rosids	11
malvids	12
Brassicales	13
Brassicaceae	14
Camelineae	15
Arabidopsis	16
Arabidopsis thaliana (thale cress)	17


Z. S. Mustafin, S. A. Lashin, Y. G. Matushkin, K. V. Gunbin, and D. A. Afonnikov, "Orthoscape: a cytoscape application for grouping and visualization KEGG based gene networks by taxonomy and homology principles," BMC Bioinformatics, vol. 18, no. 51, pp. 1–9, 2017, doi: 10.1186/s12859-016-1427-5.

The comparison of calculation results phylostratigraphy age genes:

Phylostra	tum	Genes in phylostratum Analysis by BLAST 1	Genes in phylostratum Analysis by BLAST 2	Orthoscape
Green Plants	1	15708	10781	4789
Land Plants	2	4807	6160	399
Vascular Plants	3	553	1068	426
Angiosperms	4	1289	3443	2708
Eudicots	5	516	1299	3625
Rosids	6	697	527	1246
Malvids	7	22	15	246
Brassicales	8	22	1318	11269
Arabidopsis	9	2318	160	1195
AT	10	1484	522	1987

Comparison of the results of the studies using BLAST. The researchers chose different phylostratigraphic trees, where they pointed the key periods in organism evolution.

- Correlation coefficient is 0.74
- Choice of the key taxons on the phylostratigraphic tree doesn't influence much on the gene age, when been analyzed by the same method.

Analysis by BLAST 2 Orthoscape BLAST 1 - C. Ruprecht et al., "Phylogenomic analysis of gene co-expression networks reveals the evolution of functional modules," Plant J., vol. 90, no. 3, pp. 447-465, May 2017, doi: 10.1111/tpj.13502. BLAST 2 - M. Quint, H.-G. Drost, A. Gabel, K. K. Ullrich, M. Bönn, and I.

Grosse, "A transcriptomic hourglass in plant embryogenesis," Nature, vol. 490, no. 7418, pp. 98-101, Sep. 2012, doi: 10.1038/nature11394.

Comparison of the myTai and Orthoscape results :

- Correlation coefficient is 0.27
- The results are completely different when using these methods.
- Orthoscape found considerably more young genes, while myTai found more ancient genes.